CHEMISTRY OF BLEOMYCIN. XXVI BIOSYNTHETIC STUDY USING ¹³C-ENRICHED PRECURSORS

Tokuji Nakatani, Akio Fujii, Hiroshi Naganawa*, Tomohisa Takita* and Hamao Umezawa*

Research Laboratory, Pharmaceutical Division, Nippon Kayaku Co., Shimo, Kita-ku, Tokyo 115, Japan *Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication March 5, 1980)

3-Morpholinopropylamino-bleomycin (MOP-BLM) was produced by the culture of *Streptomyces verticillus* ATCC 15003 grown in the presence of a ¹³C-enriched compound and 3-morpholinopropylamine in the medium, and the resulting MOP-BLM was analyzed by ¹³C-NMR spectrometry. In the spectrum of MOP-BLM produced by addition of ¹³C-methyl-L-methionine, the intensities of two signals assigned to the methyl carbon of the pyrimidine chromophore and of the 2-position of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety were remarkably enhanced. When DL-alanine-3-¹⁸C was added, the signals emanated from the 5-methyl and 2-methine carbons of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety were markedly enhanced. These results definitely indicate that the methyl group of the pyrimidine moiety originates from methionine-methyl group and the carbon skeleton of the pentanoic acid moiety is formed from alanine, acetate and methionine-methyl group. This study also revealed that the former assignment of the two signals from the two methyl carbons of the 4-amino-3-hydroxy-2-methyl group.

As reported briefly¹⁾, we have previously studied the biosynthesis of bleomycin (BLM) by isolating of the biosynthetic intermediates and by testing the incorporation of ¹⁴C-labeled compounds. These studies showed that the methionine-methyl group was incorporated into the methyl group of the pyrimidine chromophore after the synthesis of the pyrimidine-ring, and suggested that the 4-amino-3-hydroxy-2-methylpentanoic acid moiety was formed from alanine, acetate and methionine-methyl group. To confirm these findings and to clarify the ambiguity of the assignment of the two methyl-carbon signals of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety, we studied the biosynthesis of bleomycin by ¹⁸C-NMR spectrometry of the bleomycin produced by fermentation with specific ¹⁸C-enriched substances.

Experimentals

L-Methionine-methyl-¹³C (90 atom %) and DL-alanine-3-¹³C (90 atom %) were purchased from Commissariat a L'Energie Atomique and Merck Sharp and Dohme Canada Limited, respectively.

¹H-Noise decoupled ¹³C FT NMR spectra were recorded on a Varian XL-100-DISK FT spectrometer at 25.16 MHz and ambient probe temperature (30°C) using 5-mm tube. About 40 mg of the sample was dissolved in 0.3 ml of deuterium oxide and the pHm (pH meter reading uncorrected for deuterium isotope effects) of the solution was adjusted to $6.6 \sim 6.7$. FT NMR measurement conditions were as follows: spectrum width, 5120 Hz; pulse flipping angle, 35°; acquisition time, 0.8 sec.; number of data points, 8,191; number of transients, 14,682. Dioxane was used as the internal reference of ¹³Cchemical shift, which was adjusted to δ 67.40.

Fermentation

Streptomyces verticillus ATCC 15003 was cultured in seven 500-ml flasks each containing 100 ml of

the following medium: 6.4% millet jelly, 0.5% glucose, 3.5% soy bean meal, 0.75% corn steep liquor, 0.3% NaCl, 0.2% NaNO₃, 0.1% K₂HPO₄, 0.05% ZnSO₄·7H₂O, 0.01% CuSO₄·5H₂O, 0.01% 3-morpholinopropylamine. The inoculated flasks were aerated rotationally at 28°C for 7 days. The ¹³C-enriched compound was added 7 times during the third to fifth day of the fermentation. The total amount of the ¹³C-enriched methionine added to the 7 flasks was 34.3 mg. In another culture experiment 242 mg of the ¹³C-enriched alanine was added to the seven flasks in the same way.

Extraction and Purification

The culture filtrate was passed through a column of Amberlite XAD-2 (90 ml). The adsorbed material was eluted with 1: 4 mixture of 0.01 N HCl and methanol. The eluate was dried under diminished pressure, the dried material was extracted with 80 % methanol, and the methanol soluble fraction was passed through a column of alumina (20 ml). The effluent was dried under diminished pressure and the dried material was chromatographed on CM-Sephadex C-25 column (30 ml). Elution with a linear gradient of NaCl solution (0.05 M \rightarrow 1.0 M) gave blue-colored 3-morpholinopropylamino-bleomycin (MOP-BLM), a bleomycin containing 3-morpholinopropylamine as the terminal amine²⁰. An appreciable amount of any other congener of bleomycin was not detected by this chromatography. The colorless copper-free MOP-BLM was obtained by treatment of the blue MOP-BLM with hydrogen sulfide in methanol. Thus, from the 700 ml cultures, 48 mg of the metal-free ¹⁸C-methionine-incorporated MOP-BLM (¹⁸C-Ala-MOP-BLM), and 48 mg of MOP-BLM (without addition of a ¹³C-enriched substance for the control) were obtained.

Results and Discussion

The ¹³C-NMR spectra of ¹³C-Ala-MOP-BLM, ¹³C-Met-MOP-BLM and natural abundance MOP-BLM are shown in Fig. 1-a, -b, and -c. All of the signals have been already assigned by us except for

Fig. 1. ¹³C-NMR spectra of ¹³C-Ala-MOP-BLM, ¹³C-Met-MOP-BLM and natural abundance MOP-BLM.

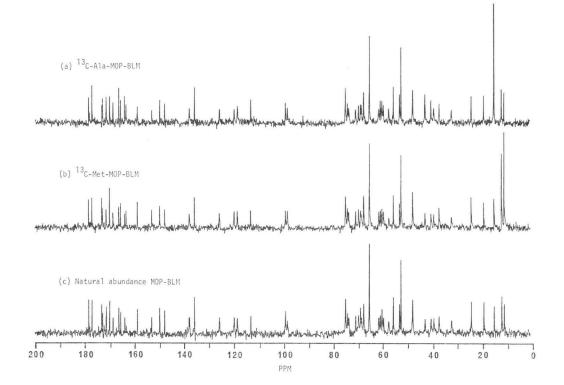


Table 1. The ¹³C-chemical shifts and ¹³C-enrichment ratios of ¹³C-Ala-MOP-BLM and ¹³C-Met-MOP-BLM.

Carbon*	¹³ C-Ala-MOP- BLM		¹³ C-Met-MOP- BLM		Carbon*	¹³ C-Ala-MOP- BLM		¹³ C-Met-MOP- BLM	
	Chemical shift	Enrich ratio	Chemical shift	Enrich ratio		Chemical shift	Enrich ratio	Chemical shift	Enrich ratio
III-CO	178.3	1.04	178.3	0.93	G-4	69.9	1.06	69.9	1.21
II-S-CO	176.9	0.93	176.9	0.85	M-2	69.1	0.75	69.1	0.84
V-CO	172.9	0.72	173.0	1.04	IV-β-CH	68.7	1.12	68.8	0.98
I-CO	172.7	0.88	172.7	0.80	I-β-CH	67.9	}0.99	67.9	}1.13
VI-CO	171.2	0.99	171.2	0.73	G-5	67.9		67.9	}1.15
IV-CO	169.8	0.78	169.8	1.11	M- 4	65.4	0.93	65.4	0.96
II-R-CO	168.4	0.92	168.5	0.77	VII-O-CH ₂	65.4×2	50.93	65.4×2	\$0.90
11-2	166.1	1.38	166.1	1.02	M- 6	61.7	0.81	61.7	1.11
II-4	165.4	1.02	165.4	1.14	G-6	61.1	1.12	61.1	1.04
VI-2	163.8	1.44	163.8	0.90	V-CH	60.5	0.88	60.5	0.88
VI-2'	163.2	0.98	163.2	1.03	Ι-α-CΗ	59.9	1.13	59.9	1.08
M-CO	158.7	0.77	158.7	1.17	IV- α -CH	57.8	1.15	57.8	0.82
II-6	152.9	0.73	152.9	1.11	VII-7-CH ₂	55.9	0.94	55.9	0.95
VI-4	149.6	0.89	149.6	1.00	II-CH	53.4	1.02	53.5	1.03
VI-4′	147.6	0.84	147.7	0.90	VII-N-CH ₂	52.9×2	1.00	52.9×2	1.00
IV-2	137.7	0.86	137.8	0.91	III-7-CH	48.2	}0.93	48.3	1
IV-4	135.6	0.96	135.7	0.97	$V-CH_2$	48.2		48.3	}1.11
VI-5'	125.7	0.88	125.7	0.98	III- α -CH	43.4	1.98	43.4	1.19
VI-5	119.8	0.90	119.8	1.05	$II-CH_2$	41.0	1.42	41.0	1.17
IV-5	118.5	1.16	118.5	1.25	$VI-\beta-CH_2$	40.0	0.91	39.9	1.03
11-5	113.0	1.01	113.1	0.95	VII- α -CH ₂	37.7	1.03	37.7	1.16
M-1	99.0	1.16	99.0	1.04	$VI-\alpha$ - CH_2	32.8	0.84	32.8	0.91
G-1	98.3	0.75	98.3	0.90	VII- β -CH ₂	24.8	0.84	24.9	0.97
III-β-CH	75.1	75.2	75.2	}1.11	I-CH ₃	19.7	0.78	19.7	0.89
M-3	75.1	0.98	75.2		III-7-CH ₃	15.7	4.01	15.7	1.14
G-2	74.3	1.02	74.3	1.09	III- α -CH ₃	12.7	0.90	12.7	2.30
M-5	73.9	0.99	73.9	0.99	II-CH ₃	11.7	1.02	11.6	2.90
G-3	71.1	0.70	71.1	0.95					

* For the numbering, see Fig. 2 and reference 3.

the signals from the terminal amine of MOP-BLM³). The ¹³C-chemical shifts and ¹³C-enrichment ratios of ¹³C-Ala-MOP-BLM and ¹³C-Met-MOP-BLM are shown in Table 1. The ¹³C-enrichment is represented by the signal height ratio to the corresponding individual signal of the natural abundance ¹³C-NMR spectrum, and the signal of VII-N-CH₂ (for the numbering, see Fig. 2 and reference 3) at ∂ 52.9 (×2) was taken as the reference (the enrichment ratio: 1.00), because the incorporation of the added ¹³Cenriched material into the unnatural morpholine is impossible. The chemical shift difference between the two spectra was within 0.1 ppm. The slight difference in the chemical shift values from the table published earlier³⁰ is due to corrected processing of the data and the difference of the measurement pH^{*}. The assignment of the methyl carbon at the 2-position (III- α -CH₃) and the 5 methyl carbon (III- γ -CH₃) of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety in Table 1 is reversed from the former table³⁰, the reason for which is discussed below.

* H. NAGANAWA, T. TAKITA and H. UMEZAWA: Unpublished.

Fig. 2. Structure of MOP-BLM.

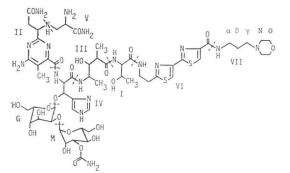
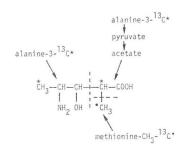



Fig. 3. The biosynthetic origin of 4-amino-3hydroxy-2-methylpentanoic acid (III) of bleomycin.

Boundaries between the labeled residues are indicated with broken lines.

In the ¹³C-NMR spectrum of ¹³C-Met-MOP-BLM the signals at δ 11.6 and 12.7 were remarkably enhanced, while in the spectrum of ¹³C-Ala-MOP-BLM the signal at δ 15.7 was greatly enhanced. The assignment of the signal at δ 11.6 to II-CH_a has been conclusively confirmed by a single frequency ¹Hdecoupling experiment³⁾. However, the assignment of the signals at δ 12.7 and 15.7 was not definite, although the former was tentatively assigned to III- γ -CH_a and the latter to III- α -CH_a from the spectra of the peptide components³). The ambiguity arose from the fact that (1) both signals always appeared as a pair in the spectra, (2) the single frequency irradiation of these methyl protons for selective decoupling was impossible due to the signal overlapping of these methyl protons and (3) the selective long-range ¹H-decoupling did not give a conclusive result. The definitive assignment of these signals is only possible by this ¹³C-enrichment technique. The previous biosynthetic study¹⁾ suggested that the 4-amino-3-hydroxy-2-methylpentanoic acid moiety is formed from alanine, acetate and methionine-methyl group¹⁾. Therefore, the signal at δ 15.7 enhanced by addition of alanine-3-¹³C must be assigned to the 5-methyl carbon (III- γ -CH₃) of the pentanoic acid moiety, and the signal at δ 12.7 enhanced by ¹³Cmethionine must be assigned to the methyl carbon at the 2-position (III- α -CH₃). This assignment is the reverse of the former assignment³). Thus, the incorporations of alanine into the C3 to C5 part and methionine-methyl into the side methyl of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety of bleomycin were conclusively confirmed (Fig. 3).

In the spectrum of ¹³C-Ala-MOP-BLM, the signal at δ 43.4 (III- α -CH) was also significantly enhanced (the ¹³C-enrichment ratio: 1.98). It was confirmed by the repeated measurement of the spectrum (the ¹³C-enrichment ratio: 1.93). Incidentally, in the same spectrum (Fig. 1a) the ¹³C-enrichment ratios of other slightly enhanced signals at δ 166.1 (the ¹³C-enrichment ratio 1.38), 163.8 (1.44) and 41.0 (1.42) were 1.25, 1.15 and 1.19 in the remeasured spectrum, respectively. The signal at δ 43.4 has previously been assigned to emanate from the α -methine carbon of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety³). The previous biosynthetic study¹) suggested that this carbon atom originates from the methyl group of acetate. It is well-known that alanine is readily converted into acetyl-CoA *via* pyruvate. Therefore, the ¹³C-enrichment at the α -methine carbon of the pentanoic acid moiety by addition of alanine-3-¹³C is confirmatory evidence for the acetate-incorporation into the C1 and C2 part of the pentanoic acid moiety (Fig. 3).

On the basis of the fact that the carbon chain of the 4-amino-3-hydroxy-2-methylpentanoic acid moiety of bleomycin is biosynthesized from alanine and acetate, the peptide chain of bleomycin is sug-

VOL. XXXIII NO. 7

gested to be elongated by a multienzyme system in a similar manner to gramicidin S^{4} .

References

- a) NAKATANI, T.; K. ISHIKAWA, Y. MURAOKA, A. FUJII, H. NAGANAWA, T. TAKITA & H. UMEZAWA: Biosynthetic study of bleomycin. Abstract paper 214, Ann. Meet. Japan Agr. Chem. Soc., 1978
 b) FUJII, A: Biogenetic aspects of bleomycin-phleomycin group antibiotics. Bleomycin: Chemical, Biochemical and Biological Aspects. pp. 75~91, Springer-Verlag, New York, 1979
- FUJII, A.; T. TAKITA, N. SHIMADA & H. UMEZAWA: Biosyntheses of new bleomycins. J. Antibiotics 27: 73~77, 1974
- NAGANAWA, H.; Y. MURAOKA, T. TAKITA & H. UMEZAWA: Chemistry of bleomycin. XVIII. Carbon-13 NMR studies. J. Antibiotics 30: 388~396, 1977
- 4) LIPMANN, F.: Attempts to map a process evolution of peptide biosynthesis. Synthesis of peptide antibiotics from thiol-linked amino acids parallels fatty acid synthesis. Science 173: 875~884, 1971